Tetrahedron Letters No. 44, pp 4201 - 4204. © Pergamon Press Ltd. 1978. Printed in Great Britain.

1,4-DIENE AND 1,4-ENYNE SYNTHESIS VIA DICHLORONORCARENOL CLEAVAGE. SYNTHESIS OF CREPENYNIC ACID.

T. L. Macdonald Vanderbilt University Nashville, Tennessee 37235

1,4-Diene and 1,4-enyne containing chains are exhibited in a wide variety of natural structures including fatty acids, insect pheremones and abnormal acyclic terpenes. Recently, the synthesis of such unsaturated systems has elicted considerable attention.¹ We wish to disclose a new route to these unsaturated chains which possesses preparative specificity in olefin geometry and flexibility in 1,4-diene or 1,4-enyne generation.

The procedure employs ring fragmentation of dichloronorcarenols¹⁴ to produce acyclic olefins of Z-configuration. Thus, cleavage of 7,7-dichloro-1-noraren-3-enol <u>1</u> with lead (IV) acetate¹² generated the ring opened dienic carboxylic acid <u>2</u> (85%) in a fashion analogous to the work of Rubotton and co-workers³ in less functionalized cyclopropanol systems.¹³

The norcarenol ring cleavage appears to be general (Table 1). Substrates with alkyl substitution on the dichloronorcarenol skeleton produce tri-substituted olefins of specific Zconfiguration ($\underline{4}$ and $\underline{6}$) and tetra-substituted olefins having predominant Z-configuration $\underline{8}$. In addition, the norcaranol oxides ($\underline{10}$ and $\underline{12}$) undergo smooth conversion to the ring opened olefinic carboxylic acids (11 and 13).

In the cleavage of tetrasubstituted olefinic norcarenol $\underline{7}$, the unexpected formation of Eolefinic carboxylic acid $\underline{9}$ was observed, although the olefin isomer ratio (E/Z + E) was variable (5-23% E) for different runs under (ostensibly) identical conditions. However, the agent responsible for isomerization could not be readily determined, since the separate isomers $\underline{8}$ and $\underline{9}$ maintained geometric integrity under the reaction conditions containing lead (IV) acetate or lead (II) acetate [Pb(OAc) $_2 \cdot 3H_2$ 0] or their combination in acetic acid for at least two reaction periods.

This lead (IV mediated dichloronorcarenol cleavage generates a 3,6-dienic carboxylic acid which possesses considerable synthetic versatility and potential. The preparation of homoallylically oxygenated Z-di- and Z-trisubstituted olefins is noteworthy.⁴ Although numerous natural products incorporate Z-olefinic systems with homoallylic oxygenation, most substituted olefin synthesis produce predominantly E-isomers.⁵ In addition, the structural diversity available <u>via</u> transformation of the 1,1-dichloro olefin moiety greatly expands the synthetic potential of these intermediates. Routine manipulation of the 2-substituted-1,1-dichloro olefin can afford terminal (or disubstituted) acetylene⁶, 2-substituted-1-chloroalkyne,^{6a} -1-chloro olefin⁷ and -1,1-dimethyl olefin (isopropenyl) structures.⁸ Finally, since phenols are the synthetic precursors of the dienic carboxylic acids (four steps)¹⁴, through appropriate phenol substitution or functionalization a wide diversity in dienic acid progeny are available.

Using this cleavage transform for the preparation of a novel, central synthon <u>14</u>, we have synthesized crepenynic acid <u>15</u>, a key intermediate in plant and fungal biosynthesis of polyacetylenic fatty acids.⁹ The synthetic route is outlined below (Scheme 1). Salient features of the synthesis include generation of the alcohol-protected lithium acetylide from the alcoholprotected dichloroolefin and <u>in situ</u> alkylation with pentyl bromide (eg. <u>16c</u> \div <u>16d</u>).^{6a} The corresponding dilithium alkoxide acetylide generated upon alkyl lithium treatment (3.3 equivalents) of the parent alcohol <u>17</u> competitively alkylated the alkoxide function (relative to the acetylide moiety) both in the presence and absence of HMPA. In addition, for the conversion of <u>18</u> to <u>19</u> dilithium tetrachloro cuprate¹⁰ is the copper species most effective in catalysis of tosylate displacement relative to tosylate S-0 bond scission (67%/25%) by the Grignard reagent.¹⁵

$$(-) \equiv -CH_2 CH_2CH_2^{(+)} C_5H_{11} - \equiv -CH_2 (CH_2)_7 CO_2H_1^{-1}$$

<u>Reagents</u>: a) $AcOH/Pb(OAc)_4$; b) Dibal-H, THF; R. T.; c) ethyl vinyl ether, HCl, O°; d) THF, n-BuLi, -70° then C_5H_{11} -Br, HMPA; e) MeOH/H₂O/HCl; f) TsCl, pyr; g) THF, ClMg-(CH₂)₆OEVE, Li₂CuCl₄; h) Jones reagent, acetone; i) Yields refer to the isolated intermediates shown.

		Table 1 ¹¹		
		Substitution	$\frac{R_{1}}{R_{1}} \xrightarrow{CO,H}{C1}$	Isolated Yield
R ₁ C1	<u>1</u>	R ₁ =R ₂ =H	<u>2</u>	85%
	3	R ₁ =H,R ₂ =i-Pro	<u>4</u>	79%
¹ 2	<u>5</u>	R ₁ =i-Pro, R ₂ =H	<u>6</u>	65%
	<u>7</u>	R ₁ =R ₂ =Me	<u>8</u>	72%
			$\underline{9}=(E-\underline{8})$	12%
			R1 CO2H R1 CI	
R ₁ OH C1	<u>10</u>	R ₁ =i-Pro, R ₂ =H	<u>11</u>	59%
C1 R2	<u>12</u>	R ₁ =H, R ₂ =i-Pro	<u>13</u>	69%

References

- a) M. Castellani, C. P. Chivsali, G. Salerno and F. Dallatomasina, J. Organomet. Chem., 146, C19 (1978) and references therein.
 b) C. A. Henrick, Tetrahedron, 33, 1845 (1977) and references therein.
- 2. T. L. Macdonald, J. Org. Chem., 43, 0000 (1978).
- 3. G. M. Rubottom, R. Marrero, D. S. Krueger and J. L. Schreiner, <u>Tetrahedron</u> <u>Letters</u>, 4013 (1977).
- Stereoselective olefin synthesis. Reviews: D. J. Faulkner, Synthesis, 175 (1971); J. Rencroft and P. G. Sammes, Quart. Rev. Chem. Soc., 25, 135 (1971).
- 5. For exceptions see: W. Clark Still and Abhijit Mltra, J. Amer. Chem. Soc., 100, 1927 (1978) and references therein.
- 6. a) J. Villieras, P. Perriot and J. F. Normont, <u>Synthesis</u>, 458 (1975).
 b) W. G. Salmond, M. Sobata and K. D. Maisto, <u>Tetrahedron Letters</u>, 1237 (1977).
- 7. T. L. Macdonald, unpublished results.
- 8. G. H. Posner, G. L. Loomis and H. S. Sawaya, Tetrahedron Letters, 1373 (1975).
- 9. J. Bu'Lock and G. N. Smith, J. Chem. Soc. C., 332 (1967).
- 10. C. Descoins and C. A. Henrick, <u>Tetrahedron Letters</u>, 2999 (1972) and references therein.
- 11. All compounds have ir, NMR and mass spectral properties consistent with the proposed structures. All products and intermediates listed (except <u>11</u>, <u>13</u> and <u>19</u>) have acceptable C and H analysis (±0.3% of theoretical).
- 12. These cleavage reactions were performed according to the procedure of Rubottom $\frac{\text{et al.}^3}{\text{alcohol}}$ The only notable difference is a pronounced exotherm upon substrate alcohol addition and a shorter reaction period (always <2.5 hours).
- For a related cleavage of 1-alkoxy-dichloronorcaranols via anodic oxidation see: M. Klehr and H. J. Shäfer, Ang. Chem. Int. Ed., 14, 247 (1975).
- 14. Dichloronorcarenols (e.g. <u>1</u>, <u>3</u>, <u>5</u>, <u>7</u>) are available in good yield via the sequence illustrated below:²

15. We wish to acknowledge the University Research Council of Vanderbilt University for support of this work and Professor D. F. Taber for his informative comments.

(Received in USA 6 June 1978)